6. Duality

- Estimating LP bounds
- LP duality
- Simple example
- Sensitivity and shadow prices
- Complementary slackness
- Another simple example

The Top Brass example revisited

```
maximize 12f + 9s subject to: 4f + 2s \le 4800, \quad f + s \le 1750 0 \le f \le 1000, \quad 0 \le s \le 1500
```

Suppose the maximum profit is p^* . How can we **bound** p^* ?

- Finding a *lower* bound is easy... pick any feasible point!
 - $\{f = 0, s = 0\}$ is feasible. So $p^* \ge 0$ (we can do better...)
 - $\{f = 500, s = 1000\}$ is feasible. So $p^* \ge 15000$.
 - $\{f = 1000, s = 400\}$ is feasible. So $p^* \ge 15600$.
- Each feasible point of the LP yields a lower bound for p^* .
- Finding the largest lower bound = solving the LP!

```
maximize 12f + 9s subject to: 4f + 2s \le 4800, \quad f + s \le 1750 0 \le f \le 1000, \quad 0 \le s \le 1500
```

Suppose the maximum profit is p^* . How can we **bound** p^* ?

- Finding an upper bound is harder... (use the constraints!)
 - ▶ $12f + 9s \le 12 \cdot 1000 + 9 \cdot 1500 = 25500$. So $p^* \le 25500$.
 - ▶ $12f + 9s \le f + (4f + 2s) + 7(f + s)$ $\le 1000 + 4800 + 7 \cdot 1750 = 18050$. So $p^* \le 18050$.
- Combining the constraints in different ways yields different upper bounds on the optimal profit p^* .

```
maximize 12f + 9s subject to: 4f + 2s \le 4800, f + s \le 1750 0 \le f \le 1000, 0 \le s \le 1500
```

Suppose the maximum profit is p^* . How can we **bound** p^* ?

What is the **best** upper bound we can find by combining constraints in this manner?

maximize
$$12f + 9s$$
 subject to:
$$4f + 2s \le 4800, \quad f + s \le 1750$$

$$0 \le f \le 1000, \quad 0 \le s \le 1500$$

• Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$ be the multipliers. If we can choose them such that for *any* feasible f and s, we have:

$$12f + 9s \le \lambda_1(4f + 2s) + \lambda_2(f + s) + \lambda_3f + \lambda_4s$$
 (1)

Then, using the constraints, we will have the following upper bound on the optimal profit:

$$12f + 9s \le 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$$

maximize
$$12f + 9s$$
 subject to:
$$4f + 2s \le 4800, \quad f + s \le 1750$$

$$0 \le f \le 1000, \quad 0 \le s \le 1500$$

• Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$ be the multipliers. If we can choose them such that for *any* feasible f and s, we have:

$$12f + 9s \le \lambda_1(4f + 2s) + \lambda_2(f + s) + \lambda_3f + \lambda_4s$$
 (1)

Rearranging (1), we get:

$$0 \le (4\lambda_1 + \lambda_2 + \lambda_3 - 12)f + (2\lambda_1 + \lambda_2 + \lambda_4 - 9)s$$

We can ensure this always holds by choosing $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ to make the bracketed terms nonnegative.

maximize
$$12f + 9s$$
 subject to:
$$4f + 2s \le 4800, \quad f + s \le 1750$$

$$0 \le f \le 1000, \quad 0 \le s \le 1500$$

• **Recap**: If we choose $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$ such that:

$$4\lambda_1+\lambda_2+\lambda_3\geq 12\quad\text{and}\quad 2\lambda_1+\lambda_2+\lambda_4\geq 9$$

Then we have a *upper* bound on the optimal profit:

$$p^{\star} \le 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$$

Finding the best (smallest) upper bound is... an LP!

The dual of Top Brass

maximize
$$12f + 9s$$
 subject to: $4f + 2s \le 4800, \quad f + s \le 1750$ $0 \le f \le 1000, \quad 0 \le s \le 1500$

To find the best upper bound, solve the **dual** problem:

$$\begin{array}{ll} \underset{\lambda_1,\lambda_2,\lambda_3,\lambda_4}{\text{minimize}} & 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4 \\ \\ \text{subject to:} & 4\lambda_1 + \lambda_2 + \lambda_3 \geq 12 \\ & 2\lambda_1 + \lambda_2 + \lambda_4 \geq 9 \\ & \lambda_1,\lambda_2,\lambda_3,\lambda_4 \geq 0 \end{array}$$

The dual of Top Brass

Primal problem:

maximize
$$12f + 9s$$

subject to: $4f + 2s \le 4800$
 $f + s \le 1750$
 $f \le 1000$
 $s \le 1500$
 $f, s \ge 0$

Dual problem:

$$\begin{array}{ll} \underset{\lambda_1, \dots, \lambda_4}{\text{minimize}} & 4800\lambda_1 + 1750\lambda_2 \\ & + 1000\lambda_3 + 1500\lambda_4 \\ \\ \text{subject to:} & 4\lambda_1 + \lambda_2 + \lambda_3 \geq 12 \\ & 2\lambda_1 + \lambda_2 + \lambda_4 \geq 9 \\ & \lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0 \end{array}$$

Solution is p^* .

Solution is d^* .

- Primal is a maximization, dual is a minimization.
- There is a dual variable for each primal constraint.
- There is a dual constraint for each primal variable.
- (any feasible primal point) $\leq p^* \leq d^* \leq$ (any feasible dual point)

The dual of Top Brass

Primal problem:

Dual problem:

$$\min_{\lambda_1, \dots, \lambda_4} \qquad \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}^\mathsf{T} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix}$$

$$\mathsf{s.t.} \qquad \begin{bmatrix} 4 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} \geq \begin{bmatrix} 12 \\ 9 \end{bmatrix}$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$$

Using matrix notation...

Code: Top Brass dual.ipynb

General LP duality

Primal problem (P)

maximize $c^{\mathsf{T}}x$ subject to: $Ax \leq b$ $x \geq 0$

Dual problem (D)

$$\begin{array}{ll} \underset{\lambda}{\text{minimize}} & b^{\mathsf{T}}\lambda \\ \text{subject to:} & A^{\mathsf{T}}\lambda \geq c \\ & \lambda \geq 0 \end{array}$$

If x and λ are feasible points of (P) and (D) respectively:

$$c^{\mathsf{T}}x \leq p^{\star} \leq d^{\star} \leq b^{\mathsf{T}}\lambda$$

Powerful fact: if p^* and d^* exist and are finite, then $p^* = d^*$. This property is known as **strong duality**.

General LP duality

Primal problem (P)

maximize $c^{\mathsf{T}}x$ subject to: $Ax \leq b$ $x \geq 0$

Dual problem (D)

 $\begin{array}{ll} \underset{\lambda}{\text{minimize}} & b^{\mathsf{T}} \lambda \\ \text{subject to:} & A^{\mathsf{T}} \lambda \geq c \\ & \lambda \geq 0 \end{array}$

- **1.** optimal p^* is attained
- **2.** unbounded: $p^* = +\infty$
- **3.** infeasible: $p^* = -\infty$

- **1.** optimal d^* is attained
- **2.** unbounded: $d^* = -\infty$
- **3.** infeasible: $d^* = +\infty$

Which combinations are possible? Remember: $p^* \leq d^*$.

General LP duality

Primal problem (P)

maximize $c^{\mathsf{T}}x$ subject to: $Ax \leq b$ $x \geq 0$

Dual problem (D)

 $\begin{array}{ll} \underset{\lambda}{\text{minimize}} & b^{\mathsf{T}}\lambda \\ \text{subject to:} & A^{\mathsf{T}}\lambda \geq c \\ & \lambda \geq 0 \end{array}$

There are exactly four possibilities:

- **1.** (P) and (D) are both feasible and bounded, and $p^* = d^*$.
- **2.** $p^* = +\infty$ (unbounded primal) and $d^* = +\infty$ (infeasible dual).
- **3.** $p^{\star} = -\infty$ (infeasible primal) and $d^{\star} = -\infty$ (unbounded dual).
- **4.** $p^* = -\infty$ (infeasible primal) and $d^* = +\infty$ (infeasible dual).

More properties of the dual

To find the dual of an LP that is **not** in standard form:

- 1. convert the LP to standard form
- 2. write the dual
- 3. make simplifications

True for LP duality, not true in general.

Example: What is the dual of the dual? the primal!

More duals

x free

6-15

 $A^{\mathsf{T}}\lambda + F^{\mathsf{T}}\mu = c$

More duals

Equivalences between primal and dual problems

Minimization	Maximization
Nonnegative variable \geq	Inequality constraint \leq
Nonpositive variable \leq	Inequality constraint \geq
Free variable	${\sf Equality}{\sf constraint} =$
Inequality constraint \geq	Nonnegative variable \geq
Inequality constraint \leq	Nonpositive variable \leq
${\sf Equality}{\sf constraint} =$	Free Variable

Simple example

Why should we care about the dual?

1. It can sometimes make a problem easier to solve

- Dual is much easier in this case!
- Many solvers take advantage of duality.
- **2.** Duality is related to the idea of sensitivity: how much do each of your constraints affect the optimal cost?

Sensitivity

Primal problem:

$$\begin{array}{ll} \underset{f,s}{\text{maximize}} & 12f + 9s \\ \text{subject to:} & 4f + 2s \leq 4800 \\ & f + s \leq 1750 \\ & f \leq 1000 \\ & s \leq 1500 \\ & f, s \geq 0 \end{array}$$

Solution is p^* .

Dual problem:

$$\begin{tabular}{lll} & \underset{\lambda_1,\dots,\lambda_4}{\text{minimize}} & \frac{4800\lambda_1+1750\lambda_2}{+1000\lambda_3+1500\lambda_4} \\ & \text{subject to:} & \frac{4\lambda_1+\lambda_2+\lambda_3\geq 12}{2\lambda_1+\lambda_2+\lambda_4\geq 9} \\ & & \lambda_1,\lambda_2,\lambda_3,\lambda_4\geq 0 \\ \end{tabular}$$

Solution is d^* .

If Millco offers to sell me more wood at a price of \$1 per board foot, should I accept the offer?

Sensitivity

Primal problem:

$$\begin{array}{ll} \underset{f,s}{\mathsf{maximize}} & 12f + 9s \\ \mathsf{subject\ to:} & 4f + 2s \leq \textcolor{red}{4800} \\ & f + s \leq 1750 \\ & f \leq 1000 \\ & s \leq 1500 \\ & f, s \geq 0 \end{array}$$

Solution is p^* .

Dual problem:

$$\label{eq:linear_problem} \begin{array}{ll} \underset{\lambda_1,\dots,\lambda_4}{\text{minimize}} & \frac{4800\lambda_1+1750\lambda_2}{+1000\lambda_3+1500\lambda_4} \\ \text{subject to:} & 4\lambda_1+\lambda_2+\lambda_3\geq 12 \\ & 2\lambda_1+\lambda_2+\lambda_4\geq 9 \\ & \lambda_1,\lambda_2,\lambda_3,\lambda_4\geq 0 \end{array}$$

Solution is d^* .

- changes in primal *constraints* are changes in the dual *cost*.
- a small change to the feasible set of the primal problem can change the optimal f and s, but $\lambda_1, \ldots, \lambda_4$ will not change!
- if we increase 4800 by 1, then $p^* = d^*$ increases by λ_1 .

Sensitivity of Top Brass

$$\max_{f,s} \quad \frac{12f + 9s}{s.t.} \quad 4f + 2s \le 5200$$

$$f + s \le 1750$$

$$0 \le f \le 1000$$

$$0 < s < 1500$$

What happens if we add 400 wood?
Profit goes up by \$600! shadow price is \$1.50, so \$1 is a good price.

Units

• In Top Brass, the primal variables f and s are the number of football and soccer trophies. The total profit is:

(profit in
$$\$$$
) = $\left(12 \frac{\$}{\text{football trophy}}\right) (f \text{ football trophies})$
+ $\left(9 \frac{\$}{\text{soccer trophy}}\right) (s \text{ soccer trophies})$

 The dual variables also have units. To find them, look at the cost function for the dual problem:

(profit in \$) = (4800 board feet of wood)
$$\left(\lambda_1 \frac{\$}{\text{board feet of wood}}\right)$$

+ $(1750 \text{ plaques}) \left(\lambda_2 \frac{\$}{\text{plaque}}\right) + \cdots$

 λ_i is the price that item *i* is worth to us.

Sensitivity in general

Primal problem (P)

maximize $c^{\mathsf{T}}x$ subject to: $Ax \leq b + e$ $x \geq 0$

Dual problem (D)

minimize
$$(b + e)^T \lambda$$

subject to: $A^T \lambda \ge c$
 $\lambda \ge 0$

Suppose we add a small e to the constraint vector b.

- The optimal x^* (and therefore p^*) may change, since we are changing the feasible set of (P). Call new values \hat{x}^* and \hat{p}^* .
- As long as e is small enough, the optimal λ will not change, since the feasible set of (D) is the same.
- Before: $p^* = b^T \lambda^*$. After: $\hat{p}^* = b^T \lambda^* + e^T \lambda^*$
- Therefore: $(\hat{p}^* p^*) = e^T \lambda^*$. Letting $e \to 0$, $\nabla_b(p^*) = \lambda^*$.

Sensitivity of Top Brass

$$\max_{f,s} \quad \frac{12f + 9s}{s.t.} \quad 4f + 2s \le 4800$$

$$f + s \le 1750$$

$$0 \le f \le 1000$$

$$0 < s < 1500$$

Constraints that are loose at optimality have corresponding dual variables that are zero; those items aren't worth anything.

Complementary slackness

- At the optimal point, some inequality constraints become *tight*. Ex: wood and plaque constraints in Top Brass.
- Some inequality constraints may remain loose, even at optimality. Ex: brass football/soccer ball constraints.
 These constraints have slack.

Either a primal constraint is tight **or** its dual variable is zero.

The same thing happens when we solve the dual problem. Some dual constraints may have slack and others may not.

Either a dual constraint is tight **or** its primal variable is zero.

These properties are called **complementary slackness**.

Proof of complementary slackness

- **Primal**: $\max_{x} c^{\mathsf{T}} x$ s.t. $Ax \leq b, x \geq 0$
- **Dual**: $\min_{\lambda} b^{\mathsf{T}} \lambda$ s.t. $A^{\mathsf{T}} \lambda \geq c, \ \lambda \geq 0$

Suppose (x, λ) is feasible for the primal and the dual.

- Because $Ax \leq b$ and $\lambda \geq 0$, we have: $\lambda^T Ax \leq b^T \lambda$.
- Because $c \leq A^T \lambda$ and $x \geq 0$, we have: $c^T x \leq \lambda^T A x$.

Combining both inequalities: $c^{\mathsf{T}}x \leq \lambda^{\mathsf{T}}Ax \leq b^{\mathsf{T}}\lambda$.

By strong duality, $c^{\mathsf{T}}x^{\star} = \lambda^{\star \mathsf{T}}Ax^{\star} = b^{\mathsf{T}}\lambda^{\star}$

Proof of complementary slackness

$$c^{\mathsf{T}} x^{\star} = \lambda^{\star \mathsf{T}} A x^{\star} = b^{\mathsf{T}} \lambda^{\star}$$

The first equation says: $x^{*T}(A^T\lambda^* - c) = 0$. But $x^* > 0$ and $A^T \lambda^* > c$, therefore:

 $u_i v_i = 0$ means that: $u_i = 0$, or $v_i = 0$, or both.

$$\sum_{i=1}^{n} x_i^{\star} (A^{\mathsf{T}} \lambda^{\star} - c)_i = 0 \quad \Longrightarrow \quad x_i^{\star} (A^{\mathsf{T}} \lambda^{\star} - c)_i = 0 \quad \forall i$$

$$x_i^*(A^T\lambda^*-c)_i=0 \quad \forall i$$

Similarly, the second equation says: $\lambda^{\star T}(Ax^{\star} - b) = 0$. But $\lambda^* > 0$ and $Ax^* \le b$, therefore:

$$\sum_{j=0}^{m} \lambda_{j}^{*} (Ax^{*} - b)_{j} = 0 \quad \Longrightarrow \quad \lambda_{j}^{*} (Ax^{*} - b)_{j} = 0 \quad \forall j$$

$$\lambda_j^{\star}(Ax^{\star}-b)_j=0 \quad \forall j$$

Another simple example

Primal problem:

Dual problem:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & x_1 + x_2 \\ \text{subject to:} & 2x_1 + x_2 \geq 5 \\ & x_1 + 4x_2 \geq 6 \\ & x_1 \geq 1 \end{array}$$

$$\begin{array}{ll} \underset{\lambda}{\mathsf{maximize}} & 5\lambda_1 + 6\lambda_2 + \lambda_3 \\ \mathsf{subject to:} & 2\lambda_1 + \lambda_2 + \lambda_3 = 1 \\ & \lambda_1 + 4\lambda_2 = 1 \\ & \lambda_1, \lambda_2, \lambda_3 \geq 0 \end{array}$$

Question: Is the feasible point $(x_1, x_2) = (1, 3)$ optimal?

- Second primal constraint is slack, therefore $\lambda_2 = 0$.
- Costs should match, so $5\lambda_1 + \lambda_3 = 4$.
- Dual constraints must hold, so $2\lambda_1 + \lambda_3 = 1$ and $\lambda_1 = 1$.
- Only solution is $\lambda_1 = 1$, $\lambda_2 = 0$, $\lambda_3 = -1$. This does not satisfy $\lambda_i \geq 0$ so the dual has no corresponding point!

(1,3) is **not optimal** for the primal.

Another simple example

Primal problem:

minimize $x_1 + x_2$ subject to: $2x_1 + x_2 \ge 5$

 $x_1 + 4x_2 > 6$

 $x_1 > 1$

Dual problem:

$$\begin{array}{ll} \underset{\lambda}{\text{maximize}} & 5\lambda_1+6\lambda_2+\lambda_3\\ \text{subject to:} & 2\lambda_1+\lambda_2+\lambda_3=1\\ & \lambda_1+4\lambda_2=1\\ & \lambda_1,\lambda_2,\lambda_3\geq 0 \end{array}$$

Another question: Is $(x_1, x_2) = (2, 1)$ optimal?

- Third primal constraint is slack, therefore $\lambda_3 = 0$.
- Costs should match, so $5\lambda_1 + 6\lambda_2 = 3$.
- Dual constraints hold, so $2\lambda_1 + \lambda_2 = 1$ and $\lambda_1 + 4\lambda_2 = 1$.
- A solution is $\lambda_1 = \frac{3}{7}$, $\lambda_2 = \frac{1}{7}$, $\lambda_3 = 0$, which is dual feasible!

(2,1) is **optimal** for the primal.