6. Duality

- Estimating LP bounds
- LP duality
- Simple example
- Sensitivity and shadow prices
- Complementary slackness
- Another simple example

The Top Brass example revisited

$$
\begin{array}{rrl}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s & \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, & 0 \leq s \leq 1500
\end{array}
$$

Suppose the maximum profit is p^{\star}. How can we bound p^{\star} ?

- Finding a lower bound is easy... pick any feasible point!
- $\{f=0, s=0\}$ is feasible. So $p^{\star} \geq 0$ (we can do better...)
- $\{f=500, s=1000\}$ is feasible. So $p^{\star} \geq 15000$.
- $\{f=1000, s=400\}$ is feasible. So $p^{\star} \geq 15600$.
- Each feasible point of the LP yields a lower bound for p^{\star}.
- Finding the largest lower bound $=$ solving the LP!

Estimating upper bounds

$$
\begin{array}{cc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500
\end{array}
$$

Suppose the maximum profit is p^{\star}. How can we bound p^{\star} ?

- Finding an upper bound is harder... (use the constraints!)

$$
\begin{aligned}
-12 f+9 s & \leq 12 \cdot 1000+9 \cdot 1500=25500 . \text { So } p^{\star} \leq 25500 \\
-12 f+9 s & \leq f+(4 f+2 s)+7(f+s) \\
& \leq 1000+4800+7 \cdot 1750=18050 . \text { So } p^{\star} \leq 18050
\end{aligned}
$$

- Combining the constraints in different ways yields different upper bounds on the optimal profit p^{\star}.

Estimating upper bounds

$$
\begin{array}{cc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500
\end{array}
$$

Suppose the maximum profit is p^{\star}. How can we bound p^{\star} ?

What is the best upper bound we can find by combining constraints in this manner?

Estimating upper bounds

$$
\begin{array}{cc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500
\end{array}
$$

- Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$ be the multipliers. If we can choose them such that for any feasible f and s, we have:

$$
\begin{equation*}
12 f+9 s \leq \lambda_{1}(4 f+2 s)+\lambda_{2}(f+s)+\lambda_{3} f+\lambda_{4} s \tag{1}
\end{equation*}
$$

Then, using the constraints, we will have the following upper bound on the optimal profit:

$$
12 f+9 s \leq 4800 \lambda_{1}+1750 \lambda_{2}+1000 \lambda_{3}+1500 \lambda_{4}
$$

Estimating upper bounds

$$
\begin{array}{cc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500
\end{array}
$$

- Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$ be the multipliers. If we can choose them such that for any feasible f and s, we have:

$$
\begin{equation*}
12 f+9 s \leq \lambda_{1}(4 f+2 s)+\lambda_{2}(f+s)+\lambda_{3} f+\lambda_{4} s \tag{1}
\end{equation*}
$$

Rearranging (1), we get:

$$
0 \leq\left(4 \lambda_{1}+\lambda_{2}+\lambda_{3}-12\right) f+\left(2 \lambda_{1}+\lambda_{2}+\lambda_{4}-9\right) s
$$

We can ensure this always holds by choosing $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ to make the bracketed terms nonnegative.

Estimating upper bounds

$$
\begin{array}{cc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500
\end{array}
$$

- Recap: If we choose $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$ such that:

$$
4 \lambda_{1}+\lambda_{2}+\lambda_{3} \geq 12 \quad \text { and } \quad 2 \lambda_{1}+\lambda_{2}+\lambda_{4} \geq 9
$$

Then we have a upper bound on the optimal profit:

$$
p^{\star} \leq 4800 \lambda_{1}+1750 \lambda_{2}+1000 \lambda_{3}+1500 \lambda_{4}
$$

Finding the best (smallest) upper bound is... an LP!

The dual of Top Brass

$$
\begin{array}{cc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800, \quad f+s \leq 1750 \\
& 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500
\end{array}
$$

To find the best upper bound, solve the dual problem:

$$
\begin{array}{rc}
\underset{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}{\operatorname{minimize}} & 4800 \lambda_{1}+1750 \lambda_{2}+1000 \lambda_{3}+1500 \lambda_{4} \\
\text { subject to: } & 4 \lambda_{1}+\lambda_{2}+\lambda_{3} \\
2 \lambda_{1}+\lambda_{2}+\lambda_{4} & \geq 9 \\
& \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}
\end{array} \geq 0
$$

The dual of Top Brass

Primal problem:

$$
\begin{array}{rc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& f \leq 1000 \\
& s \leq 1500 \\
& f, s \geq 0
\end{array}
$$

Dual problem:

$$
\begin{array}{cc}
\underset{\lambda_{1}, \ldots, \lambda_{4}}{\operatorname{minimize}} & \begin{array}{c}
4800 \lambda_{1}+1750 \lambda_{2} \\
+1000 \lambda_{3}+1500 \lambda_{4}
\end{array} \\
\text { subject to: } & 4 \lambda_{1}+\lambda_{2}+\lambda_{3} \geq 12 \\
& 2 \lambda_{1}+\lambda_{2}+\lambda_{4} \geq 9 \\
& \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0
\end{array}
$$

Solution is d^{\star}.

- Primal is a maximization, dual is a minimization.
- There is a dual variable for each primal constraint.
- There is a dual constraint for each primal variable.
- (any feasible primal point) $\leq p^{\star} \leq d^{\star} \leq$ (any feasible dual point)

The dual of Top Brass

Primal problem:

Dual problem:

$$
\begin{array}{cc}
\max _{f, s} & {\left[\begin{array}{c}
12 \\
9
\end{array}\right]^{\top}\left[\begin{array}{l}
f \\
s
\end{array}\right]} \\
\text { s.t. } & \left.\left[\begin{array}{ll}
4 & 2 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
f \\
s
\end{array}\right]^{4800}\right] \leq\left[\begin{array}{l}
1750 \\
1000 \\
1500
\end{array}\right] \\
f, s \geq 0
\end{array}
$$

Using matrix notation...
Code: Top Brass dual.ipynb

General LP duality

Primal problem (\mathbf{P})

Dual problem (D)


```
minimize}\mp@subsup{b}{\lambda}{\top}
subject to: }\mp@subsup{A}{}{\top}\lambda\geq
    \lambda\geq0
```

If x and λ are feasible points of (P) and (D) respectively:

$$
c^{\top} x \leq p^{\star} \leq d^{\star} \leq b^{\top} \lambda
$$

Powerful fact: if p^{\star} and d^{\star} exist and are finite, then $p^{\star}=d^{\star}$. This property is known as strong duality.

General LP duality

Primal problem (\mathbf{P})

1. optimal p^{\star} is attained
2. unbounded: $p^{\star}=+\infty$
3. infeasible: $p^{\star}=-\infty$

Dual problem (D)

$$
\begin{array}{cc}
\underset{\lambda}{\operatorname{minimize}} & b^{\top} \lambda \\
\text { subject to: } & A^{\top} \lambda \geq c \\
& \lambda \geq 0
\end{array}
$$

1. optimal d^{\star} is attained
2. unbounded: $d^{\star}=-\infty$
3. infeasible: $d^{\star}=+\infty$

Which combinations are possible? Remember: $p^{\star} \leq d^{\star}$.

General LP duality

Primal problem (\mathbf{P})

Dual problem (D)

$\underset{x}{\operatorname{maximize}}$	$c^{\top} x$
subject to:	$A x \leq b$
	$x \geq 0$

There are exactly four possibilities:

1. (P) and (D) are both feasible and bounded, and $p^{\star}=d^{\star}$.
2. $p^{\star}=+\infty$ (unbounded primal) and $d^{\star}=+\infty$ (infeasible dual).
3. $p^{\star}=-\infty$ (infeasible primal) and $d^{\star}=-\infty$ (unbounded dual).
4. $p^{\star}=-\infty$ (infeasible primal) and $d^{\star}=+\infty$ (infeasible dual).

More properties of the dual

To find the dual of an LP that is not in standard form:

1. convert the LP to standard form
2. write the dual
3. make simplifications

True for LP duality, not true in general.

Example: What is the dual of the dual? the primal!

$\begin{array}{cl} \min _{\lambda} & b^{\top} \lambda \\ \text { s.t. } & A^{\top} \lambda \geq c \\ & \lambda \geq 0 \end{array}$		equiv
equiv	$\begin{array}{cl} -\max _{\lambda} & (-b)^{\top} \lambda \\ \text { s.t. } & \left(-A^{\top}\right) \lambda \leq(-c) \\ & \lambda \geq 0 \end{array}$	$\begin{aligned} & c^{\top} z \\ & A z \leq b \\ & z \geq 0 \end{aligned}$

More duals

Standard form:

Free form:

$\max _{x}$	$c^{\top} x$
s.t.	$A x \leq b$
	x free

$\max _{x}$	$c^{\top} x$
s.t.	$A x \leq b$
	$F x=g$
	x free dual

More duals

Equivalences between primal and dual problems

Minimization	Maximization
Nonnegative variable \geq	Inequality constraint \leq
Nonpositive variable \leq	Inequality constraint \geq
Free variable	Equality constraint $=$
Inequality constraint \geq	Nonnegative variable \geq
Inequality constraint \leq	Nonpositive variable \leq
Equality constraint $=$	Free Variable

Simple example

Why should we care about the dual?

1. It can sometimes make a problem easier to solve

- Dual is much easier in this case!
- Many solvers take advantage of duality.

2. Duality is related to the idea of sensitivity: how much do each of your constraints affect the optimal cost?

Sensitivity

Primal problem:

Dual problem:

$$
\begin{array}{rc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& f \leq 1000 \\
& s \leq 1500 \\
& f, s \geq 0
\end{array}
$$

Solution is d^{\star}.

$$
\begin{array}{cc}
\operatorname{minimize}_{\lambda_{1}, \ldots, \lambda_{4}}^{\operatorname{mab}} & 4800 \lambda_{1}+1750 \lambda_{2} \\
\text { subject to: } & 4 \lambda_{1}+\lambda_{2}+\lambda_{3} \geq 12 \\
& 2 \lambda_{1}+\lambda_{2}+\lambda_{4} \geq 9 \\
& \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0
\end{array}
$$

Solution is p^{\star}.

Sensitivity

Primal problem:

$$
\begin{array}{rc}
\underset{f, s}{\operatorname{maximize}} & 12 f+9 s \\
\text { subject to: } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& f \leq 1000 \\
& s \leq 1500 \\
& f, s \geq 0
\end{array}
$$

Dual problem:

$$
\begin{array}{cc}
\underset{\lambda_{1}, \ldots, \lambda_{4}}{\operatorname{minimize}} & \begin{array}{c}
4800 \lambda_{1}+1750 \lambda_{2} \\
+1000 \lambda_{3}+1500 \lambda_{4}
\end{array} \\
\text { subject to: } & 4 \lambda_{1}+\lambda_{2}+\lambda_{3} \geq 12 \\
& 2 \lambda_{1}+\lambda_{2}+\lambda_{4} \geq 9 \\
& \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0
\end{array}
$$

Solution is d^{\star}.

- changes in primal constraints are changes in the dual cost.
- a small change to the feasible set of the primal problem can change the optimal f and s, but $\lambda_{1}, \ldots, \lambda_{4}$ will not change!
- if we increase 4800 by 1 , then $p^{\star}=d^{\star}$ increases by λ_{1}.

Sensitivity of Top Brass

$$
\begin{array}{ll}
\max _{f, s} & 12 f+9 s \\
\text { s.t. } & 4 f+2 s \leq 5200 \\
& f+s \leq 1750 \\
& 0 \leq f \leq 1000 \\
& 0 \leq s \leq 1500
\end{array}
$$

What happens if we add 400 wood?

Profit goes up by $\$ 600$! shadow price is $\$ 1.50$, so $\$ 1$ is a good price.

Units

- In Top Brass, the primal variables f and s are the number of football and soccer trophies. The total profit is:

$$
\begin{aligned}
&(\text { profit in } \mathbb{\$})=\left(12 \frac{\$}{\text { football trophy }}\right)(f \text { football trophies }) \\
&+\left(9 \frac{\$}{\text { soccer trophy }}\right)(s \text { soccer trophies })
\end{aligned}
$$

- The dual variables also have units. To find them, look at the cost function for the dual problem:

$$
\begin{aligned}
(\text { profit in } \mathbb{\$})= & (4800 \text { board feet of wood })\left(\lambda_{1} \frac{\$}{\text { board feet of wood }}\right) \\
& +(1750 \text { plaques })\left(\lambda_{2} \frac{\$}{\text { plaque }}\right)+\cdots
\end{aligned}
$$

λ_{i} is the price that item i is worth to us.

Sensitivity in general

Primal problem (\mathbf{P})

Dual problem (D)

$$
\begin{array}{cc}
\underset{x}{\operatorname{maximize}} & c^{\top} x \\
\text { subject to: } & A x \leq b+e \\
& x \geq 0
\end{array}
$$

$$
\begin{array}{cc}
\underset{\lambda}{\operatorname{minimize}} & (b+e)^{\top} \lambda \\
\text { subject to: } & A^{\top} \lambda \geq c \\
& \lambda \geq 0
\end{array}
$$

Suppose we add a small e to the constraint vector b.

- The optimal x^{\star} (and therefore p^{\star}) may change, since we are changing the feasible set of (P). Call new values $\hat{\chi}^{\star}$ and \hat{p}^{\star}.
- As long as e is small enough, the optimal λ will not change, since the feasible set of (D) is the same.
- Before: $p^{\star}=b^{\top} \lambda^{\star}$. After: $\hat{p}^{\star}=b^{\top} \lambda^{\star}+e^{\top} \lambda^{\star}$
- Therefore: $\left(\hat{p}^{\star}-p^{\star}\right)=e^{\top} \lambda^{\star}$. Letting $e \rightarrow 0, \nabla_{b}\left(p^{\star}\right)=\lambda^{\star}$.

Sensitivity of Top Brass

$$
\begin{array}{ll}
\max _{f, s} & 12 f+9 s \\
\text { s.t. } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& 0 \leq f \leq 1000 \\
& 0 \leq s \leq 1500
\end{array}
$$

Constraints that are loose at optimality have corresponding dual variables that are zero; those items aren't worth anything.

Complementary slackness

- At the optimal point, some inequality constraints become tight. Ex: wood and plaque constraints in Top Brass.
- Some inequality constraints may remain loose, even at optimality. Ex: brass football/soccer ball constraints. These constraints have slack.

Either a primal constraint is tight or its dual variable is zero.

The same thing happens when we solve the dual problem. Some dual constraints may have slack and others may not.

Either a dual constraint is tight or its primal variable is zero.

These properties are called complementary slackness.

Proof of complementary slackness

- Primal: $\max _{x} c^{\top} x$ s.t. $A x \leq b, x \geq 0$
- Dual: $\min _{\lambda} b^{\top} \lambda$ s.t. $A^{\top} \lambda \geq c, \lambda \geq 0$

Suppose (x, λ) is feasible for the primal and the dual.

- Because $A x \leq b$ and $\lambda \geq 0$, we have: $\lambda^{\top} A x \leq b^{\top} \lambda$.
- Because $c \leq A^{\top} \lambda$ and $x \geq 0$, we have: $c^{\top} x \leq \lambda^{\top} A x$.

Combining both inequalities: $c^{\top} x \leq \lambda^{\top} A x \leq b^{\top} \lambda$.

$$
\text { By strong duality, } c^{\top} x^{\star}=\lambda^{\star \top} A x^{\star}=b^{\top} \lambda^{\star}
$$

Proof of complementary slackness

$$
c^{\top} x^{\star}=\lambda^{\star \top} A x^{\star}=b^{\top} \lambda^{\star}
$$

The first equation says: $x^{\star}{ }^{\top}\left(A^{\top} \lambda^{\star}-c\right)=0$.
$u_{i} v_{i}=0$ means that: $u_{i}=0$, or $v_{i}=0$, or both. But $x^{\star} \geq 0$ and $A^{\top} \lambda^{\star} \geq c$, therefore:

$$
\sum_{i=1}^{n} x_{i}^{\star}\left(A^{\top} \lambda^{\star}-c\right)_{i}=0 \quad \Longrightarrow \quad x_{i}^{\star}\left(A^{\top} \lambda^{\star}-c\right)_{i}=0 \quad \forall i
$$

Similarly, the second equation says: $\lambda^{\star \top}\left(A x^{\star}-b\right)=0$.
But $\lambda^{\star} \geq 0$ and $A x^{\star} \leq b$, therefore:

$$
\sum_{j=1}^{m} \lambda_{j}^{\star}\left(A x^{\star}-b\right)_{j}=0 \quad \Longrightarrow \quad \lambda_{j}^{\star}\left(A x^{\star}-b\right)_{j}=0 \quad \forall j
$$

Another simple example

Primal problem:

Dual problem:

$$
\begin{array}{rc}
\underset{x}{\operatorname{minimize}} & x_{1}+x_{2} \\
\text { subject to: } & 2 x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 6 \\
& x_{1} \geq 1
\end{array}
$$

Question: Is the feasible point $\left(x_{1}, x_{2}\right)=(1,3)$ optimal?

- Second primal constraint is slack, therefore $\lambda_{2}=0$.
- Costs should match, so $5 \lambda_{1}+\lambda_{3}=4$.
- Dual constraints must hold, so $2 \lambda_{1}+\lambda_{3}=1$ and $\lambda_{1}=1$.
- Only solution is $\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=-1$. This does not satisfy $\lambda_{i} \geq 0$ so the dual has no corresponding point!
$(1,3)$ is not optimal for the primal.

Another simple example

Primal problem:

Dual problem:

$$
\begin{array}{rc}
\underset{x}{\operatorname{minimize}} & x_{1}+x_{2} \\
\text { subject to: } & 2 x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 6 \\
& x_{1} \geq 1
\end{array}
$$

Another question: Is $\left(x_{1}, x_{2}\right)=(2,1)$ optimal?

- Third primal constraint is slack, therefore $\lambda_{3}=0$.
- Costs should match, so $5 \lambda_{1}+6 \lambda_{2}=3$.
- Dual constraints hold, so $2 \lambda_{1}+\lambda_{2}=1$ and $\lambda_{1}+4 \lambda_{2}=1$.
- A solution is $\lambda_{1}=\frac{3}{7}, \lambda_{2}=\frac{1}{7}, \lambda_{3}=0$, which is dual feasible!

$(2,1)$ is optimal for the primal.

